6.8k views
0 votes
URGENT please help solve these questions and graph

URGENT please help solve these questions and graph-example-1
URGENT please help solve these questions and graph-example-1
URGENT please help solve these questions and graph-example-2

1 Answer

4 votes

Answer:


\textsf{1)}\quad \textsf{Center:}\quad (0, 0)


\begin{aligned}\textsf{2)}\quad &\textsf{Minor vertices:}\quad (-440, 0)\;\textsf{and}\;(440, 0)\\ &\textsf{Major vertices:}\quad (-528.5, 0)\;\textsf{and}\; (528.5, 0)\end{aligned}


\textsf{3)}\quad \textsf{Foci:}\quad (0, -292.8)\;\textsf{and}\;(0, 292.8)


\begin{aligned}\textsf{4)}\quad &\textsf{General form:} \quad (x^2)/(193600)+(y^2)/(279312.25)=1\\\\ &\textsf{Standard form:}\quad 2793.1225x^2+1936y^2-540748516=0\end{algned}

Explanation:

The provided ellipse is a vertical ellipse.

The general equation of a vertical ellipse is:


\boxed{\begin{array}{l}\underline{\textsf{General equation of a vertical ellipse}}\\\\((x-h)^2)/(a^2)+((y-k)^2)/(b^2)=1\\\\\textsf{where:}\\\phantom{ww}\bullet\textsf{$2b=$ major axis}\\\phantom{ww}\bullet\textsf{$2a=$ minor axis}\\\phantom{ww}\bullet \textsf{$(h,k)=$ center}\\\phantom{ww}\bullet\textsf{$(h,k\pm b)=$ major vertices}\\\phantom{ww}\bullet\textsf{$(h\pm a,k)=$ minor vertices}\\\phantom{ww}\bullet\textsf{$(h,k\pm c)=$ foci where $c^2=b^2-a^2$}\end{array}}

Let the center of the ellipse be the origin (0, 0), so:


h = 0


k = 0

The major axis of an ellipse is the longest diameter. Therefore, the major axis is 1057, so:


2b=1057 \implies b=(1057)/(2)=528.5

The minor axis of an ellipse is the shortest diameter, perpendicular to the major axis. Therefore, the minor axis is 880, so:


2a=880 \implies a=(880)/(2)=440

The formula for the minor vertices is (h±a, k), so:


\begin{aligned}\sf Minor\;vertices&=(h\pm a, k)\\&=(0 \pm 440, 0)\\&=(\pm 440,0)\end{aligned}

The formula for the major vertices is (h, k±b), so:


\begin{aligned}\sf Major\;vertices&=(h,k\pm b)\\&=(0, 0\pm 528.5)\\&=(0,\pm 528.5)\end{aligned}

To determine the coordinates of the foci, first calculate the value of c:


\begin{aligned}c^2&=b^2-a^2\\c^2&=(528.5)^2-(440)^2\\c&=√((528.5)^2-(440)^2)\\c&=√(85712.25)\end{aligned}

Now, substitute the values of h, k and c into the formula for the foci:


\begin{aligned}\sf Foci&=(h, k\pm c)\\&=(0,0\pm √(85712.25))\\&=(0,\pm 292.8)\end{aligned}

To find the equation of the ellipse, substitute the values of a, b, h and k into the formula:


((x-0)^2)/((440)^2)+((y-0)^2)/((528.5)^2)=1

Simplify:


\boxed{(x^2)/(193600)+(y^2)/(279312.25)=1}

To write this in standard form:


x^2+(193600y^2)/(279312.25)=193600


279312.25x^2+193600y^2=54074851600


279312.25x^2+193600y^2-54074851600=0


\boxed{2793.1225x^2+1936y^2-540748516=0}

URGENT please help solve these questions and graph-example-1
URGENT please help solve these questions and graph-example-2
User Edam
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories