After the collision, the angular velocity (ω) of the rod and the disk combined is approximately 1.39 rad/s.
How to find angular velocity?
Calculate the initial angular momentum (
):
The linear momentum of the disk before the collision is
.
(conversion from grams to kilograms).
(initial velocity of the disk).
The distance from the pivot to the point of impact is equal to the length of the rod,
.
Therefore,
.
Calculate the moment of Inertia (I) of the system after the collision:
Moment of inertia of the rod
(
) =


Therefore,

Moment of inertia of the disk
.
Therefore,

Total moment of inertia

Using conservation of angular momentum to find the final angular velocity (
):

Solve for ω:
.
Initial angular momentum (
):
![\[ L_{\text{initial}} = 1.20 * 0.047 * 32.5 \\= 1.833 \, \text{kg}\cdot\text{m}^2/\text{s} \]](https://img.qammunity.org/2024/formulas/physics/high-school/hr1jgg60g6a8ds4qmyf284btsub8jq53p2.png)
Moment of inertia for rod (
):**
![\[ I_{\text{rod}} = (1)/(3) * 2.60 * 1.20^2 \\= 1.248 \, \text{kg}\cdot\text{m}^2 \]](https://img.qammunity.org/2024/formulas/physics/high-school/vg6gti2f3niq5hsvvonao34alm22lp3mpd.png)
Moment of inertia for disk (
):**
![\[ I_{\text{disk}} = 0.047 * 1.20^2 \\= 0.06768 \, \text{kg}\cdot\text{m}^2 \]](https://img.qammunity.org/2024/formulas/physics/high-school/tt1v9hiwu1bzd8avh6gqprk1mvs4pu0him.png)
Total moment of inertia (
):**
![\[ I_{\text{total}} = I_{\text{rod}} + I_{\text{disk}} \\ =1.31568 \, \text{kg}\cdot\text{m}^2 \]](https://img.qammunity.org/2024/formulas/physics/high-school/ov8frsbnuahl5x02cr4rowpn5p353pbhgw.png)
Final angular velocity (ω):
![\[ \omega = \frac{L_{\text{initial}}}{I_{\text{total}}} \\ = (1.833)/(1.31568) \\ = 1.39 \, \text{rad/s} \]](https://img.qammunity.org/2024/formulas/physics/high-school/h9sj2kssnecxdvespassrguljdoiefbptr.png)
Therefore, after the collision, the angular velocity of the rod-disk system is approximately 1.39 rad/s.