51.7k views
4 votes
Factor the following polynomials completely. Show work below.

Factor the following polynomials completely. Show work below.-example-1
User Sglessard
by
7.6k points

1 Answer

3 votes

The factor form of the polynomials are: Case 1: (x - 10) · (x - 3), Case 2: (2 · x + 7) · (2 · x - 7), Case 3:
3 \cdot (x - 3) \cdot \left(x + (2)/(3) \right), Case 4:
4 \cdot (2 \cdot x + 5) \cdot \left(x - (9999)/(40) \right)\cdot \left(x - (1)/(40)\right), Case 5: 3 · x · (x + 10) · (x + 3), Case 6: (x² + 7) · (x + 2) · (x - 2)

How to factor polynomials

Herein we find six cases of polynomials, whose factor form must be derived according to following rules:

Common factor

a · x² + a · b = a · (x² + b)

Difference of squares

a² - b² = (a + b) · (a - b)

Sum of cubes

a³ + b³ = (a + b) · (a² - a · b + b²)

Factor of quadratic equations

a · x² - a · (r₁ + r₂) · x + r₁ · r₂ = a · (x - r₁) · (x - r₂)

Now we proceed to factor the polynomials:

Case 1: x² - 13 · x + 30

x² - 13 · x + 30

(x - 10) · (x - 3)

Case 2: 4 · x² - 49

4 · x² - 49

(2 · x + 7) · (2 · x - 7)

Case 3: 3 · x² - 7 · x - 6

3 · x² - 7 · x - 6


3 \cdot \left(x^2 - (7)/(3)\cdot x - 2 \right)


3 \cdot (x - 3) \cdot \left(x + (2)/(3) \right)

Case 4: 8 · x³ + 125

8 · x³ + 125

(2 · x + 5) · (4 · x² - 1000 · x² + 25)


4 \cdot (2 \cdot x + 5) \cdot \left(x^2 - 250 \cdot x + (25)/(4)\right)


4 \cdot (2 \cdot x + 5) \cdot \left(x - (9999)/(40) \right)\cdot \left(x - (1)/(40)\right)

Case 5: 3 · x³ + 39 · x² + 90 · x

3 · x³ + 39 · x² + 90 · x

x · (3 · x² + 39 · x + 90)

3 · x · (x² + 13 · x + 30)

3 · x · (x + 10) · (x + 3)

Case 6: x⁴ + 3 · x² - 28

x⁴ + 3 · x² - 28

(x² + 7) · (x² - 4)

(x² + 7) · (x + 2) · (x - 2)

User Denolk
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories