The factor form of the polynomials are: Case 1: (x - 10) · (x - 3), Case 2: (2 · x + 7) · (2 · x - 7), Case 3:
, Case 4:
, Case 5: 3 · x · (x + 10) · (x + 3), Case 6: (x² + 7) · (x + 2) · (x - 2)
How to factor polynomials
Herein we find six cases of polynomials, whose factor form must be derived according to following rules:
Common factor
a · x² + a · b = a · (x² + b)
Difference of squares
a² - b² = (a + b) · (a - b)
Sum of cubes
a³ + b³ = (a + b) · (a² - a · b + b²)
Factor of quadratic equations
a · x² - a · (r₁ + r₂) · x + r₁ · r₂ = a · (x - r₁) · (x - r₂)
Now we proceed to factor the polynomials:
Case 1: x² - 13 · x + 30
x² - 13 · x + 30
(x - 10) · (x - 3)
Case 2: 4 · x² - 49
4 · x² - 49
(2 · x + 7) · (2 · x - 7)
Case 3: 3 · x² - 7 · x - 6
3 · x² - 7 · x - 6


Case 4: 8 · x³ + 125
8 · x³ + 125
(2 · x + 5) · (4 · x² - 1000 · x² + 25)


Case 5: 3 · x³ + 39 · x² + 90 · x
3 · x³ + 39 · x² + 90 · x
x · (3 · x² + 39 · x + 90)
3 · x · (x² + 13 · x + 30)
3 · x · (x + 10) · (x + 3)
Case 6: x⁴ + 3 · x² - 28
x⁴ + 3 · x² - 28
(x² + 7) · (x² - 4)
(x² + 7) · (x + 2) · (x - 2)