5.2k views
3 votes
Use the figure below to answer the question.
In circle o, mBAC = 304°. Find mBOC.

Use the figure below to answer the question. In circle o, mBAC = 304°. Find mBOC.-example-1
User Ekalic
by
8.0k points

1 Answer

3 votes
To find \(mBOC\), we can use the property that the measure of an angle formed by two chords that intersect inside a circle is equal to half the sum of the intercepted arcs.

Since \(mBAC = 304°\), we know that the intercepted arc \(BC\) is also \(304°\).

Therefore, \(mBOC\) is equal to half the sum of the intercepted arcs \(BC\) and \(AC\):

\(mBOC = \frac{mBC + mAC}{2} = \frac{304° + 304°}{2} = \frac{608°}{2} = 304°\).

So, \(mBOC = 304°\). Let me know if there's anything else I can assist you with!
User Ilblackdragon
by
7.2k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories