289,320 views
21 votes
21 votes
Write the given function as the composition of two functions.y=√15 + 6xChoose the correct answer below.OA. If f(x) = -√x and g(x) = 15+ 6x, then y = f(g(x)].1B. If f(x)=√x and g(x) = -OC. If f(x) =³√xCOD. If f(x) = -115+ 6x'then y = f[g(x)].and g(x)= 15+ 6x, then y = f[g(x)].and g(x) = 15+ 6x, then y = f[g(x)]....

Write the given function as the composition of two functions.y=√15 + 6xChoose the-example-1
User Richard Barrell
by
2.2k points

1 Answer

28 votes
28 votes
Answer:
\begin{gathered} if\text{ }f(x)\text{ = -}\sqrt[3]{x}\text{ and g\lparen x\rparen = 15 + 6x,} \\ then\text{ y = f\lbrack g\lparen x\rparen\rbrack \lparen option A\rparen} \end{gathered}

Step-by-step explanation:

Given:


y\text{ = -}\sqrt[3]{15+6x}

To find:

the functions that give the above composite function

f(g(x)): substitute x in f(x) with g(x)

This means g(x) will be 15 + 6x which will be substituted into function f(x)


\begin{gathered} f(x)\text{ = -}\sqrt[3]{x} \\ g(x)\text{ = 15 + 6x} \\ \\ Check: \\ f(g(x)):\text{ substitute x in g\lparen x\rparen with f\lparen x\rparen} \\ f(g(x))\text{ = -}\sqrt[3]{15\text{ + 6x}} \end{gathered}

User Mad Dog Tannen
by
2.7k points