211k views
14 votes
Consider in the figure below.

The perpendicular bisectors of its sides are , , and . They meet at a single point .
(In other words, is the circumcenter of .)
Suppose , , and .
Find , , and .
Note that the figure is not drawn to scale.

Consider in the figure below. The perpendicular bisectors of its sides are , , and-example-1
User Datasmurf
by
4.4k points

1 Answer

8 votes

Let's solve

in ∆GNK

  • GN=130
  • GJ=94
  • GK=GJ/2=47

Apply pythagorean theorem


\\ \sf\longmapsto NK^2=GN^2-GK^2=130^2-47^2=16900-2209=14691


\\ \sf\longmapsto NK=√(14691)


\\ \sf\longmapsto NK=121(Approx)

If you observe the traingle

  • GN=NJ=130


\\ \sf\longmapsto LJ^2=JN^2-LN^2


\\ \sf\longmapsto LJ^2=130^2-78^2


\\ \sf\longmapsto LJ^2=16900-6084


\\ \sf\longmapsto LJ^2=10816


\\ \sf\longmapsto LJ=√(10816)


\\ \sf\longmapsto LJ=104

  • LH=LJ =104

So

in ∆HNL


\\ \sf\longmapsto HN^2=104^2+78^2


\\ \sf\longmapsto HN^2=10816+6084


\\ \sf\longmapsto HN^2=16900


\\ \sf\longmapsto HN=√(16900)


\\ \sf\longmapsto HN=130

Done .

User Alessign
by
4.7k points