159k views
0 votes
Find the derivative using quiotent rule ​

Find the derivative using quiotent rule ​-example-1
User Bluelights
by
7.6k points

1 Answer

2 votes

Answer:


\frac{\text{d}y}{\text{d}x}=(1)/(2√(x)(√(x)+1)^2)

Explanation:

Given rational equation:


y=(√(x))/(√(x)+1)

To find the derivative of the given equation, we can use the quotient rule.


\boxed{\begin{array}{c}\underline{\textsf{Quotient Rule for Differentiation}}\\\\\textsf{If $y=(u)/(v)$ then:}\\\\\frac{\text{d}y}{\text{d}x}=\frac{v \frac{\text{d}u}{\text{d}x}-u\frac{\text{d}v}{\text{d}x}}{v^2}\\\\\end{array}}

First, identify u and v and differentiate them separately:


\textsf{Let}\;\;u=√(x)=x^{(1)/(2)}\implies \frac{\text{d}u}{\text{d}x}=(1)/(2)x^{-(1)/(2)}=(1)/(2√(x))


\textsf{Let}\;\;v=√(x)+1=x^{(1)/(2)}+1 \implies \frac{\text{d}v}{\text{d}x}=(1)/(2)x^{-(1)/(2)}+0=(1)/(2√(x))

Now, put everything into the quotient rule formula:


\frac{\text{d}y}{\text{d}x}=((√(x)+1) \cdot (1)/(2√(x))-√(x) \cdot (1)/(2√(x)))/((√(x)+1)^2)

Simplify where possible:


\frac{\text{d}y}{\text{d}x}=((√(x)+1)/(2√(x))-(√(x))/(2√(x)))/((√(x)+1)^2)


\frac{\text{d}y}{\text{d}x}=((√(x)+1-√(x))/(2√(x)))/((√(x)+1)^2)


\frac{\text{d}y}{\text{d}x}=((1)/(2√(x)))/((√(x)+1)^2)


\frac{\text{d}y}{\text{d}x}=(1)/(2√(x)(√(x)+1)^2)

Therefore, the derivative of the given equation is:


\large\boxed{\boxed{\frac{\text{d}y}{\text{d}x}=(1)/(2√(x)(√(x)+1)^2)}}

User Matthew Erwin
by
8.5k points