71.2k views
5 votes
Find the slope-intercept form of the equation given the two points (3, -1)
and (4, -3).

User Sorifiend
by
7.4k points

1 Answer

5 votes

Final answer:

To find the slope-intercept form of the equation given two points, calculate the slope using the change in y and x, and find the y-intercept by substituting one of the points in the equation y = mx + b. Finally, write the equation in slope-intercept form.


Step-by-step explanation:

To find the slope-intercept form of the equation given two points, we need to find the slope and the y-intercept. The slope, denoted by m, is calculated as the change in y divided by the change in x between the two points. In this case, the change in y is -3 - (-1) = -2, and the change in x is 4 - 3 = 1. So the slope is -2/1, which simplifies to -2.

To find the y-intercept, we can substitute one of the given points into the slope-intercept form y = mx + b and solve for b. Let's use the point (3, -1): -1 = -2(3) + b. Solving this equation, we get b = 5.

Therefore, the slope-intercept form of the equation is y = -2x + 5.


Learn more about Slope-intercept form of equation

User Tashauna
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories