278,544 views
4 votes
4 votes
In ∆OPQ, q =1.7cm, o=3.8 cm and < P=96°. Find < Q, to the nearest 10th of a degree.

User Fireitup
by
3.5k points

1 Answer

29 votes
29 votes

To solve the exercise you can use the law of cosine, which applies to any triangle:


b^2=a^2+c^2-2ac\cdot\cos (B)

Where

So, in this case, you have


\begin{gathered} p^2=o^2+q^2-2oq\cdot\cos (P) \\ p^2=(3.8cm)^2+(1.7cm)^2-2(3.8cm)(1.7cm)\cdot\cos (96\text{\degree)} \\ p^2=14.44cm^2+2.89cm^2-12.92cm^2\cdot\cos (96\text{\degree)} \\ p^2=17.33\operatorname{cm}^2-(-1.35cm^2) \\ p^2=17.33\operatorname{cm}+1.35cm^2 \\ p^2=18.68\operatorname{cm}^2 \\ \text{ Apply square root to both sides of the equation} \\ \sqrt[]{p^2}=\sqrt[]{18.68\operatorname{cm}^2} \\ p=4.32\operatorname{cm} \end{gathered}

Now, you can use the law of sine, which applies to any triangle:


(a)/(\sin (A))=(b)/(\sin (B))=(c)/(\sin (C))

In this case, you have


\begin{gathered} (q)/(\sin(Q))=(p)/(\sin(P)) \\ \frac{1.7\operatorname{cm}}{\sin(Q)}=\frac{4.32\operatorname{cm}}{\sin(96\text{\degree})} \\ \text{ Apply cross product} \\ 1.7\operatorname{cm}\cdot\sin (96\text{\degree})=\sin (Q)\cdot4.32\operatorname{cm} \\ \text{ Divide by 4.32 cm from both sides of the equation} \\ \frac{1.7\operatorname{cm}\cdot\sin(96\text{\degree})}{4.32\operatorname{cm}}=\frac{\sin(Q)\cdot4.32\operatorname{cm}}{4.32\operatorname{cm}} \\ \frac{1.7\operatorname{cm}\cdot\sin(96\text{\degree})}{4.32\operatorname{cm}}=\sin (Q) \\ 0.39=\sin (Q) \\ \text{ Apply the inverse function }\sin ^(-1)(\theta)\text{ both sides of the equation} \\ \sin ^(-1)(0.39)=\sin ^(-1)(\sin (Q)) \\ 23.0\text{\degree}=Q \end{gathered}

Therefore, the measure of angle Q is 23 degrees.

In ∆OPQ, q =1.7cm, o=3.8 cm and < P=96°. Find < Q, to the nearest 10th of a-example-1
In ∆OPQ, q =1.7cm, o=3.8 cm and < P=96°. Find < Q, to the nearest 10th of a-example-2
User Gcp
by
2.8k points