70.7k views
3 votes
Attached below is my question. It is differential calculus. I greatly thank you for any help or time that you spend on this..! Have a most wonderful day!

Attached below is my question. It is differential calculus. I greatly thank you for-example-1

2 Answers

1 vote

Answer:


f'(x)=(9x^2+3x-3)/(2x√(x))


f'(1)=(9)/(2)

Explanation:

Given rational function:


f(x)=(3x^2+3x+3)/(√(x))

To find f'(x), we can differentiate the function f(x) using the quotient rule:


\boxed{\begin{array}{c}\underline{\textsf{Quotient Rule for Differentiation}}\\\\\textsf{If $y=(u)/(v)$ then:}\\\\\frac{\text{d}y}{\text{d}x}=\frac{v \frac{\text{d}u}{\text{d}x}-u\frac{\text{d}v}{\text{d}x}}{v^2}\\\\\end{array}}

First, identify u and v and differentiate them separately using the power rule and the constant rule:


\boxed{\begin{array}{l}\underline{\textsf{Differentiation Rules}}\\\\\textsf{Power Rule:}\quad \frac{\text{d}}{\text{d}x}\left(ax^n\right)=n\cdot ax^(n-1)\\\\\textsf{Constant Rule:}\quad\frac{\text{d}}{\text{d}x}\left(a\right)=0\\\\\textsf{(where $a$ is a constant)}\end{array}}

Therefore:


\begin{aligned}u=3x^2+3x+3 \implies \frac{\text{d}u}{\text{d}x}&=2 \cdot 3x^(2-1)+1 \cdot 3x^(1-1)+0\\\\\frac{\text{d}u}{\text{d}x}&=6x^1+3x^0\\\\\frac{\text{d}u}{\text{d}x}&=6x+3(1)\\\\\frac{\text{d}u}{\text{d}x}&=6x+3\end{aligned}


\begin{aligned}v=√(x)=x^(\frac12) \implies \frac{\text{d}v}{\text{d}x}&=(1)/(2)\cdot x^(\frac12-1)\\\\\frac{\text{d}v}{\text{d}x}&=(1)/(2)x^(-\frac12)\\\\\frac{\text{d}v}{\text{d}x}&=(1)/(2x^(\frac12))\\\\\frac{\text{d}v}{\text{d}x}&=(1)/(2√(x))\end{aligned}

Now, substitute everything into the quotient rule:


\frac{\text{d}y}{\text{d}x}=(√(x) \cdot (6x+3)-(3x^2+3x+3)\cdot (1)/(2√(x)))/(\left(√(x)\right)^2)

Simplify:


\frac{\text{d}y}{\text{d}x}=(√(x) \cdot (6x+3)-(3x^2+3x+3)/(2√(x)))/(x)


\frac{\text{d}y}{\text{d}x}=((2√(x)√(x) (6x+3))/(2√(x))-(3x^2+3x+3)/(2√(x)))/(x)


\frac{\text{d}y}{\text{d}x}=((2x(6x+3))/(2√(x))-(3x^2+3x+3)/(2√(x)))/(x)


\frac{\text{d}y}{\text{d}x}=((12x^2+6x)/(2√(x))-(3x^2+3x+3)/(2√(x)))/(x)


\frac{\text{d}y}{\text{d}x}=((12x^2+6x-3x^2-3x-3)/(2√(x)))/(x)


\frac{\text{d}y}{\text{d}x}=((9x^2+3x-3)/(2√(x)))/(x)


\frac{\text{d}y}{\text{d}x}=(9x^2+3x-3)/(2x√(x))

Therefore, the derivative of function f(x) is:


\large\boxed{\boxed{f'(x)=(9x^2+3x-3)/(2x√(x))}}

To find f'(1), simply substitute x = 1 into f'(x):


f'(1)=(9(1)^2+3(1)-3)/(2(1)√(1))


f'(1)=(9(1)+3(1)-3)/(2(1)(1))


f'(1)=(9+3-3)/(2)


f'(1)=(9)/(2)

Therefore, the value of f'(1) is:


\large\boxed{\boxed{f'(1)=(9)/(2)}}

User Marcel Ray
by
7.4k points
1 vote

Answer:


\displaystyle f'(x)=(9x^2+3x-3)/(2x^(3)/(2))


\displaystyle f'(1)=(9)/(2)

Explanation:

We can use the power rule and the quotient rule to find f'(x) and f'(1). Let us review how to apply these derivative rules.


\displaystyle \boxed{\text{Power Rule: } (d)/(dx)(x^n)=n*x }


\displaystyle \boxed{\text{Quotient Rule:}\;\;\frac{d}{{dx}}\left( {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \frac{{\frac{d}{{dx}}f\left( x \right)g\left( x \right) - f\left( x \right)\frac{d}{{dx}}g\left( x \right)}}{{g^2 \left( x \right)}}}

Now we can find the derivative. Take the derivative of both sides of the equation.

➜ Take note that
√(x) =x^(1)/(2).


\displaystyle f'(x)=\frac{x^(1)/(2) (6x+3)-(3x^2+3x+3)((1)/(2)x^{-(1)/(2)} )}{(√(x) )^2}}

Next, we can simplify this a little bit.

Square.


\displaystyle f'(x)=\frac{x^(1)/(2) (6x+3)-(3x^2+3x+3)((1)/(2)x^{-(1)/(2)} )}{x}

Distribute.


\displaystyle f'(x)=\frac{6x^(3)/(2)+3x^(1)/(2)-((3)/(2)x^(3)/(2)+(3)/(2)x^(1)/(2)+(3)/(2)x^{-(1)/(2)} )}{x}


\displaystyle f'(x)=\frac{6x^(3)/(2)+3x^(1)/(2)-(3)/(2)x^(3)/(2)-(3)/(2)x^(1)/(2)-(3)/(2)x^{-(1)/(2)}}{x}

Combine like terms and simplify.

➜ Take note that a negative exponent becomes positive when moved to the denominator.


\displaystyle f'(x)=(9x^2+3x-3)/(2x^(3)/(2))

Lastly, we will substitute 1 for x to find f'(1).


\displaystyle f'(x)=(9x^2+3x-3)/(2x^(3)/(2))


\displaystyle f'(1)=(9(1)^2+3(1)-3)/(2(1)^(3)/(2))

Simplify:


\displaystyle f'(1)=(9+3-3)/(2)


\displaystyle f'(1)=(9)/(2)

User Dor Cohen
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories