143k views
5 votes
Simplify this pretty pls I just can’t figure it out

Simplify this pretty pls I just can’t figure it out-example-1

1 Answer

5 votes

Answer:


\sf 2x^(1)/(6)y^(3)/(4)

Explanation:

To simplify
\sf \left( \frac{ 4x^{-(4)/(3) } \cdot 8 y ^(5)/(3)\cdot x }{x^(-1)\cdot 2y ^{-(4)/(3)}} \right)^(1)/(4), we can use the definition of exponents and the formula for power and product rule.

The definition of an exponent tells us that
\sf x^n = x\cdot x\cdot ... \cdot x,

where n is the number of times we multiply x by itself.

The formula for the product rule tells us that:


\sf x^n \cdot x^m = x^(n+m)

and

Power rule:


\sf (x^n)^m = x^(nm)

Quotient rule:


(x^n)/(x^m) = x^(n-m)

Using these definitions and the formula, we can simplify the expression as follows:


\sf \left( \frac{ 4x^{-(4)/(3) } \cdot 8 y ^(5)/(3)\cdot x }{x^(-1)\cdot 2y ^{-(4)/(3)}}\right)^(1)/(4) =\left( \frac{ 2^2 \cdot x^{-(4)/(3) } \cdot 2^3 \cdot y ^(5)/(3)\cdot x }{x^(-1)\cdot 2y ^{-(4)/(3)}} \right)^(1)/(4)


= \left( \frac{ 2^(2+3) \cdot x^{-(4)/(3)+1 } \cdot y ^(5)/(3) }{x^(-1)\cdot 2y ^{-(4)/(3)}} \right)^(1)/(4)


= \left( \frac{ 2^(5) \cdot x^{-(1)/(3) } \cdot y ^(5)/(3) }{x^(-1)\cdot 2y ^{-(4)/(3)}} \right)^(1)/(4)


= \left( 2^(5-1) \cdot x^{-(1)/(3) + 1 } \cdot y ^{(5)/(3) +(4)/(3) } \right)^(1)/(4)


\left( 2^(4) \cdot x^{(2)/(3) } \cdot y ^{(9)/(3)} \right)^(1)/(4)


= \left( 2^(4) \cdot x^{(2)/(3) } \cdot y ^{(9)/(3)} \right)^(1)/(4)


= \left( 2^(4) \cdot x^{(2)/(3) } \cdot y ^(3) \right)^(1)/(4)


\sf = 2^{4\cdot (1)/(4) } \cdot x^{(2)/(3) \cdot (1)/(4) } \cdot y ^{3\cdot (1)/(4)}


= 2 \cdot x^(1)/(6)\cdot y^(3)/(4)


= \boxed{2x^(1)/(6)y^(3)/(4)}

So,

the simplified answer is:


\sf 2x^(1)/(6)y^(3)/(4)

User Squeegy
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories