179k views
4 votes
For any real numbers a, b, c; a(b + c) = ab + ac demonstrates the distributive proerty.

O False
O True

User Netanel
by
8.0k points

1 Answer

2 votes

Final answer:

The statement a(b + c) = ab + ac represents the distributive property in mathematics.


Step-by-step explanation:

The statement a(b + c) = ab + ac represents the distributive property in mathematics. This property states that when you multiply a number (a) by the sum of two numbers (b + c), it is the same as multiplying a by each of the two numbers separately and adding the products together.

For example, let's say a = 2, b = 3, and c = 4. Substituting these values into the equation, we have 2(3 + 4) = 2(3) + 2(4), which simplifies to 2(7) = 6 + 8 or 14 = 14. Therefore, the equation holds true.

Thus, the statement a(b + c) = ab + ac is True and represents the distributive property.


Learn more about Distributive property in mathematics

User Joe Davis
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories