226k views
1 vote
Simplify the expression
0.3y^2 * (-1/3 x^4 y^6)

1 Answer

0 votes

Answer:


0.1 \cdot x^4 y^(8)

Explanation:

To simplify the expression
\sf 0.3y^2 * \left(-(1)/(3) x^4 y^6\right), we can use the distributive property and the power rule.

Distributive property:


\boxed{\sf (a + b) * c = a * c + b * c }

Power rule:


\boxed{\sf x^m * x^n = x^(m + n) }

Using the distributive property, we can distribute the 0.3y^2 to the -1/3 and the x^4 y^6:


\sf 0.3y^2 * \left(-(1)/(3) x^4 y^6\right) = - 0.3y^2 * (1)/(3) x^4 y^6

Simplify :


0.1 \cdot y^2 \cdot x^4 y^6

Using the power rule, we can simplify the terms in parentheses:


0.1 \cdot x^4 y^(2+6)

Combining like terms, we get:


0.1 \cdot x^4 y^(8)

Therefore, the simplified expression is:


0.1 \cdot x^4 y^(8)

User Denis Babarykin
by
7.5k points