63.2k views
3 votes
What is the solution to the problem 3/5x > -2x - 26

User Headcrab
by
7.8k points

2 Answers

7 votes

Answer:


\sf x > -10

Explanation:

To solve the inequality
\sf (3)/(5)x > -2x - 26,we can follow these steps:

First, let's get rid of the fractions by multiplying both sides of the inequality by 5 to clear the denominator:


\sf 5 \cdot (3)/(5)x > 5(-2x - 26)

This simplifies to:


\sf 3x > -10x - 130

Now, let's gather like terms on each side of the inequality.

Add 10x to both sides to move all the x-terms to the left side:


3x + 10x > -10x + 10x - 130

This simplifies to:


\sf 13x > -130

Finally, divide both sides by 13 to isolate x:


\sf (13x)/(13) > (-130)/(13)

This simplifies to:


\sf x > -10

So, the solution to the inequality is:


\sf x > -10

User Stylesuxx
by
7.7k points
7 votes

x > -10

===============

Simplify the expression, first, we can multiply both sides of the inequality by 5 to get rid of the fraction:

  • 3x > -10x - 130

Next, we can add 10x to both sides:

  • 13x > -130

Finally, we divide both sides by 13 to solve for x:

  • x > -10

So, the solution to the inequality is x > -10.

User Hutchonoid
by
7.3k points