Answer:
a) sin(θ) = 5/13
b) cos(θ) = 12/13
c) tan(θ) = 5/12
d) cos(2θ) =119/169
e) tan(2θ) = 120/119
f) cot(2θ) = 119/120
g) sec(2θ) = 169/119
h) csc(2θ) = 169/120
Explanation:
Given:
With respect to θ.
- Opposite = 5
- Adjacent = 12
To find:
- a) sin(θ)
- b) cos(θ)
- c) tan(θ)
- d) cos(2θ)
- e) tan(2θ)
- f) cot(2θ)
- g) sec(2θ)
- h) csc(2θ)
Solution:
First let's find hypotenuse by using Pythagorean theorem:

Now,
Let's find all
a) sin(θ)

b) cos(θ)

c) tan(θ)

d) cos(2θ)
To find cos(2θ), we can use the following formula:

e) tan(2θ)
To find tan(2θ), we can use the following formula:

f) cot(2θ)

Therefore,

g) sec(2θ)

Therefore,

f) csc(2θ)
To find sin(2θ), we can use the following formula:

So, the answer is:
a) sin(θ) = 5/13
b) cos(θ) = 12/13
c) tan(θ) = 5/12
d) cos(2θ) =119/169
e) tan(2θ) = 120/119
f) cot(2θ) = 119/120
g) sec(2θ) = 169/119
h) csc(2θ) = 169/120