109k views
2 votes
Find the exact value

Find the exact value-example-1
User Evil Toad
by
8.2k points

1 Answer

5 votes

Answer:

a) sin(θ) = 5/13

b) cos(θ) = 12/13

c) tan(θ) = 5/12

d) cos(2θ) =119/169

e) tan(2θ) = 120/119

f) cot(2θ) = 119/120

g) sec(2θ) = 169/119

h) csc(2θ) = 169/120

Explanation:

Given:

With respect to θ.

  • Opposite = 5
  • Adjacent = 12

To find:

  • a) sin(θ)
  • b) cos(θ)
  • c) tan(θ)
  • d) cos(2θ)
  • e) tan(2θ)
  • f) cot(2θ)
  • g) sec(2θ)
  • h) csc(2θ)

Solution:

First let's find hypotenuse by using Pythagorean theorem:


\begin{aligned} \sf hypotenuse^2 & =\sf opposite ^2 + adjacent ^2 \\\\ \sf hypotenuse & = √( 5^2 + 12^2 ) \\\\ \sf hypotenuse & = √(169)\\\ \sf hypotenuse & = 13 \end{aligned}

Now,

Let's find all

a) sin(θ)


\begin{aligned} \sf sin(\theta) & =\sf (opposite )/( hypotenuse )\\\\ & = (5 )/(13) \end{aligned}

b) cos(θ)


\begin{aligned} \sf cos(\theta) & =\sf ( adjacent )/( hypotenuse ) \\\\ & =( 12 )/( 13) \end{aligned}

c) tan(θ)


\begin{aligned} \sf tan(\theta) & =\sf (opposite )/( adjacent ) & = (5)/(12)\end{aligned}

d) cos(2θ)

To find cos(2θ), we can use the following formula:


\begin{aligned} \sf cos(2\theta) & = \sf cos^2 \theta - sin^2 \theta \\\\ & = \left((12)/(13)\right)^2 - \left((5)/(13)\right)^2 \\\\ & = (144)/(169) - (25)/(169) \\\\ & = (144 - 25 )/(169) \\\\ & = (119)/(169) \end{aligned}

e) tan(2θ)

To find tan(2θ), we can use the following formula:


\begin{aligned} \sf tan(2\theta )& =( (2 \cdot tan(θ))/( (1 - tan²θ)) \\\\ & = ( 2 \cdot ( 5 )/( 12))/(1 -\left((5)/(12)\right)^2 ) \\\\ & = ( (5)/(6) )/( 1 - (25)/(144)) \\\\ & = ((5)/(6))/(( 144 - 25)/(144)) \\\\ & = ((5)/(6))/(( 119)/(144)) \\\\ & = (5)/(6)\cdot ( 144)/(119) \\\\ & = (120)/(119)\end{aligned}

f) cot(2θ)


\sf cot(2\theta ) =( 1 )/( tan(2\theta))

Therefore,


\sf cot(2\theta ) =( 1 )/( (120)/(119)) = (119)/(120)

g) sec(2θ)


\sf sec(2θ) =( 1 )/(cos(2\theta) )

Therefore,


\sf sec(2θ) =( 1 )/((119)/(169) ) =(169)/(119)

f) csc(2θ)


\sf csc(2\theta) =( 1 )/( sin(2\theta))

To find sin(2θ), we can use the following formula:


\begin{aligned} \sf sin(2\theta) & = 2 sin(\theta) cos(\theta) \\\\ & = 2 \cdot (5 )/( 13)\cdot (12 )/(13) \\\\ & = ( 2 \cdot 5 \cdot 12 )/(13\cdot 13 ) \\\\ & = (120)/( 169)\end{aligned}


\sf csc(2\theta) =( 1 )/( (120)/(169)) = (169)/(120)

So, the answer is:

a) sin(θ) = 5/13

b) cos(θ) = 12/13

c) tan(θ) = 5/12

d) cos(2θ) =119/169

e) tan(2θ) = 120/119

f) cot(2θ) = 119/120

g) sec(2θ) = 169/119

h) csc(2θ) = 169/120

User Gisellet
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories