71,965 views
6 votes
6 votes
Use the standard deviation values of the two samples to find the standard deviation of the sample mean differences.Sample Standard Deviationred box 3.868blue box 2.933

User Ishwor Khanal
by
2.7k points

1 Answer

9 votes
9 votes

Given:

The standard deviation are given as,


\begin{gathered} \sigma_(m_1)=\text{ 3.868} \\ \sigma_(m_2)\text{ = 2.933} \\ \end{gathered}

Required:

The standard deviation of the sample mean differences.

Step-by-step explanation:

The formula for the deviation of the sample mean difference is given as,


\begin{gathered} \sigma_(m_1)-\text{ }\sigma_(m_2)\text{ = }\sqrt{(\sigma_1^2)/(n_1)+(\sigma_2^2)/(n_2)} \\ \end{gathered}

Substituting the values in the above formula,


\begin{gathered} \sigma_(m_1)-\text{ }\sigma_(m_2)\text{ = }\sqrt{(3.868^2)/(n_1)+(2.933^2)/(n_2)} \\ \sigma_(m_1)-\text{ }\sigma_(m_2)\text{ = }\sqrt{(14.9614)/(n_1)+(8.6025)/(n_2)} \end{gathered}

Answer:

Thus the required answer is,


\sigma_(m_1)-\text{\sigma}_(m_2)=\sqrt{\frac{\text{14.9614}}{n_1}+\frac{\text{8.6025}}{n_2}}

User Roy Smith
by
2.9k points