39,271 views
36 votes
36 votes
Determine the amplitude, period, and phase shift for y=1/3tan (0 +30) and use them to plot the graph of the function.

Determine the amplitude, period, and phase shift for y=1/3tan (0 +30) and use them-example-1
User Oluwakemi
by
2.9k points

1 Answer

15 votes
15 votes

Given: The function below


y=(1)/(3)tan(\theta+30^0)

To Determine: The amplitude, the period, and the phase shift

Solution

The graph of the function is as shown below

The general equation of a tangent function is


f(x)=Atan(Bx+C)+D

Where


\begin{gathered} A=Amplitude \\ Period=(\pi)/(B) \\ Phase-shift=-(C)/(B) \\ Vertical-shift=D \end{gathered}

Let us compare the general form to the given


\begin{gathered} y=(1)/(3)tan(\theta+30^0) \\ f(x)=Atan(B\theta+C)+D \\ A=(1)/(3) \\ B=1 \\ C=30^0 \\ D=0 \end{gathered}

Therefore


\begin{gathered} Amplitude=(1)/(3) \\ Period=(\pi)/(B)=(180^0)/(1)=180^0 \\ Phase-shift=-(C)/(B)=-(30^0)/(1)=-30^0 \end{gathered}

Hence, the correct option is as shown below

Determine the amplitude, period, and phase shift for y=1/3tan (0 +30) and use them-example-1
Determine the amplitude, period, and phase shift for y=1/3tan (0 +30) and use them-example-2
User Tempuslight
by
3.1k points