58.8k views
5 votes
Does anyone know this?!?

Does anyone know this?!?-example-1
User Nicoabie
by
7.8k points

1 Answer

3 votes

to get the slope of any straight line, we simply need two points off of it, let's use those two for each in the picture below.


(\stackrel{x_1}{-6}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{-3}~,~\stackrel{y_2}{3}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{3}-\stackrel{y1}{4}}}{\underset{\textit{\large run}} {\underset{x_2}{-3}-\underset{x_1}{(-6)}}} \implies \cfrac{ -1 }{-3 +6} \implies \cfrac{ -1 }{ 3 } \implies -\cfrac{1}{3} ~~ \textit{\LARGE blue} \\\\[-0.35em] ~\dotfill


(\stackrel{x_1}{-6}~,~\stackrel{y_1}{0})\qquad (\stackrel{x_2}{-4}~,~\stackrel{y_2}{6}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{6}-\stackrel{y1}{0}}}{\underset{\textit{\large run}} {\underset{x_2}{-4}-\underset{x_1}{(-6)}}} \implies \cfrac{ 6 }{-4 +6} \implies \cfrac{ 6 }{ 2 } \implies 3 ~~ \textit{\LARGE green} \\\\[-0.35em] ~\dotfill


(\stackrel{x_1}{-5}~,~\stackrel{y_1}{1})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{4}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{4}-\stackrel{y1}{1}}}{\underset{\textit{\large run}} {\underset{x_2}{4}-\underset{x_1}{(-5)}}} \implies \cfrac{ 3 }{4 +5} \implies \cfrac{ 3 }{ 9 } \implies \cfrac{1}{3} ~~ \textit{\LARGE red}

Does anyone know this?!?-example-1
User Notilas
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories