Answer:
∠G = 71°
∠J = 71°
Explanation:
Given:
∆ HJG ≅ ∆ YZX
∆ HJG is isoceles triangles.
So,
∠G = ∠J
Since the corresponding sides and angles of congruent triangles are equal
Let's take a look at angles only:
∠G = ∠X
∠H = ∠Y = 38°
∠J = ∠Z
Since the interior angles of a triangle is 180°
So,
∠G + ∠X + ∠H = 180°
Substitute the known value:
∠G + ∠X + 38° = 180°
Since ∠G = ∠X. So,
∠G + ∠G + 38° = 180°
2∠G + 38° = 180°
Subtract 38° on both sides:
2∠G + 38° - 38° = 180° - 38°
2∠G = 142°
Divide both sides by 2.

∠G = 71°
and
∠J = 71°
Therefore, the value of ∠G and ∠J is 71° for both.