Final answer:
To multiply the given polynomials, distribute each term of the first polynomial to each term of the second polynomial and then combine like terms.
Step-by-step explanation:
To multiply each pair of polynomials, we use the distributive property. We multiply each term of the first polynomial by each term of the second polynomial and then combine like terms. Let's apply this to the given expression:
- Multiply 2x by each term in the second polynomial: 2x * 3x = 6x^2, 2x * -2x = -4x^2, and 2x * -5 = -10x.
- Multiply 1 by each term in the second polynomial: 1 * 3x = 3x, 1 * -2x = -2x, and 1 * -5 = -5.
Now, we can sum up all the terms to get the final expression: 6x^2 - 4x^2 - 10x + 3x - 2x - 5.
Simplifying further, we have 2x^2 - 9x - 5.
Learn more about multiplying polynomials