143k views
2 votes
Solve using implicit differentiation

Solve using implicit differentiation-example-1
User Noelicus
by
7.4k points

1 Answer

2 votes

the assumption being that "y" is encapsulating a function in x-terms, whilst "x" is a simple variable.


3y^2+2x^2y-y=4\implies 3\stackrel{ \textit{chain rule} }{\left( 2y\cdot \cfrac{dy}{dx} \right)}+2\stackrel{ \textit{product rule} }{\left(2xy+x^2\cdot \cfrac{dy}{dx}\right)}-\cfrac{dy}{dx}=0 \\\\\\ 6y\cdot \cfrac{dy}{dx}+4xy+x^2\cdot \cfrac{dy}{dx}-\cfrac{dy}{dx}=0 \implies 6y\cdot \cfrac{dy}{dx}+x^2\cdot \cfrac{dy}{dx}-\cfrac{dy}{dx}=-4xy


\cfrac{dy}{dx}(6y+2x^2-1)=-4xy\implies \cfrac{dy}{dx}=\cfrac{-4xy}{6y+2x^2-1} \\\\[-0.35em] ~\dotfill\\\\ \left. \cfrac{dy}{dx} \right|_((x,y)=(1,1))\implies \cfrac{-4(1)(1)}{6(1)+2(1)^2-1}\implies \cfrac{-4}{7}

User PyTis
by
8.0k points