101,745 views
23 votes
23 votes
A football team is losing by 14 points near the end of a game. The team scores two touchdowns (worth 6 points each) before the end of the game. After each touchdown, the coach must decide whether to go for 1 point with a kick (which is successful 99% of the time) or 2 points with a run or pass (which is successful 45% of the time). If the team goes for 1 point after each touchdown, what is the probability that the coach’s team wins? loses? ties? If the team goes for 2 points after each touchdown, what is the probability that the coach’s team wins? loses? ties?

User Nattgew
by
2.8k points

1 Answer

13 votes
13 votes

From the question, there are some scenarios we need to cater for:

- The team is down 14 points.

- It is a given that the team scores 2 touchdowns whatever the case. This means the team has 12 points in the bag.

- That leaves 2 points to overturn the loss, or draw or lose

If the team wins:

The team can only win if they score their 2 points runs twice. i.e. An increase in 4 points from the two plays would overturn the score and the team would lead the game by 2 points.

The question asks us to find the probability of the team winning if the team goes for 2 points after each 6-point touchdown.

We can solve this as:


\begin{gathered} \text{Probability of scoring 2 =} \\ P(2)=45\text{ \%=0.45} \\ \\ \therefore\text{Probability of scoring 2 the first time AND Probability of scoring 2 the second time=} \\ P(2)* P(2)=0.45*0.45=0.2025 \\ \\ \therefore\text{probability of the team winning by going for 2 points twice=} \\ 0.2025*100\text{ \%} \\ =20.25\text{ \%} \end{gathered}

If the team loses:

If the team loses, there are some scenarios to take into consideration:

1. If the team tries 1 point plays and succeeds one time and failing the other time

2. If the team tries 1 point plays and fails twice.

3. If the team tries 2 point plays and they fail twice. (i.e. if they succeed even once, they can draw the match

User Reinaldoluckman
by
3.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.