Answer:
Given
[HONH2] = 0.45M
[OH-] = 5.26 x 10-6 M
HONH2 + H2O -------------> HONH3+ + OH-
Initial 0.45 55 0 0
at equilibrium 0.45-x 55-x x x
Given
[OH-] = x = 5.26 x 10-6 M
Therefore [HONH3+] = x = 5.26 x 10-6 M
pOH = -log[OH-] = -log(5.26 x 10-6) = 5.279
=> pH = 14- pOH = 8.72
From hendersen-hasselbach equaiton
8.72 = pKa + log(0.45/5.26 x 10-6)
=> pKa = 3.788
=> pKb = 14-3.788 = 10.21
percent of ionization = 5.26 x 10-6 * 100/0.45 = 1.17 x 10-3 %
concentration of NaOH required to make the same pH= [OH-] = 5.26 x 10-6 M
Percent of ionization of NaOH = [OH-]*100/NaOH = 5.26 x 10-6 *100/5.26 x 10-6 = 100%