28,920 views
35 votes
35 votes
"Solve for all values of x on the given intervals. Write all answer in radians." I am stuck on number 4

"Solve for all values of x on the given intervals. Write all answer in radians-example-1
User Mario Olivio Flores
by
3.0k points

1 Answer

17 votes
17 votes

Answer:


x=(2\pi)/(3)+2\pi n,x=(4\pi)/(3)+2\pi n

Explanation:

Given the equation:


\sin x\tan x=-2-\cot x\sin x

Add 2+cot(x)sin(x) to both sides of the equation.


\begin{gathered} \sin x\tan x+2+\cot x\sin x=-2-\cot x\sin x+2+\cot x\sin x \\ \sin x\tan x+2+\cot x\sin x=0 \end{gathered}

Next, express in terms of sin and cos:


\begin{gathered} \sin x(\sin x)/(\cos x)+2+(\cos x\sin x)/(\sin x)=0 \\ (\sin^2x)/(\cos x)+2+\cos x=0 \\ (\sin^2x+2\cos x+\cos^2x)/(\cos(x))=0 \\ \implies\sin^2x+2\cos x+\cos^2x=0 \end{gathered}

Apply the Pythagorean Identity: cos²x+sinx=1


2\cos x+1=0

Subtract 1 from both sides:


\begin{gathered} 2\cos x+1-1=0-1 \\ 2\cos x=-1 \end{gathered}

Divide both sides by 2:


\cos x=-(1)/(2)

Take the arccos in the interval (-∞, ):


\begin{gathered} x=\arccos(-0.5) \\ x=(2\pi)/(3)+2\pi n,x=(4\pi)/(3)+2\pi n \end{gathered}

The values of x in the given interval are:


x=(2\pi)/(3)+2\pi n,x=(4\pi)/(3)+2\pi n

User Tmim
by
2.3k points