Answer:
-18 (drop zone empty)
12 (drop zone empty)
36 (drop zone empty)
42 (drop zone empty)
Explanation:
To find the values of g(2), g(5), g(8), g(-3), and g(4), you simply need to substitute these values into the function g(x) = 2x^2 - 8x - 10. Let's calculate them one by one:
g(2):
g(2) = 2(2)^2 - 8(2) - 10
g(2) = 2(4) - 16 - 10
g(2) = 8 - 16 - 10
g(2) = -8 - 10
g(2) = -18
g(5):
g(5) = 2(5)^2 - 8(5) - 10
g(5) = 2(25) - 40 - 10
g(5) = 50 - 40 - 10
g(5) = 10 - 10
g(5) = 0
g(8):
g(8) = 2(8)^2 - 8(8) - 10
g(8) = 2(64) - 64 - 10
g(8) = 128 - 64 - 10
g(8) = 128 - 74
g(8) = 54
g(-3):
g(-3) = 2(-3)^2 - 8(-3) - 10
g(-3) = 2(9) + 24 - 10
g(-3) = 18 + 24 - 10
g(-3) = 42 - 10
g(-3) = 32
g(4):
g(4) = 2(4)^2 - 8(4) - 10
g(4) = 2(16) - 32 - 10
g(4) = 32 - 32 - 10
g(4) = 0 - 10
g(4) = -10
Now, let's evaluate the expressions you provided:
g(5) + 12 = 0 + 12 = 12
g(8) - 18 = 54 - 18 = 36
g(-3) - g(4) = 32 - (-10) = 32 + 10 = 42
The values are as follows:
g(2) = -18
g(5) + 12 = 12
g(8) - 18 = 36
g(-3) - g(4) = 42
So, the correct answers are:
-18 (drop zone empty)
12 (drop zone empty)
36 (drop zone empty)
42 (drop zone empty)