Given:
The polynomial is
![p(x)=x^3-2x^2+2x](https://img.qammunity.org/2022/formulas/mathematics/college/83j6x8872mk8ezmleoxrwx5wut9fk0ftn0.png)
To find:
The real and complex zeros of the equation.
Solution:
We have,
![p(x)=x^3-2x^2+2x](https://img.qammunity.org/2022/formulas/mathematics/college/83j6x8872mk8ezmleoxrwx5wut9fk0ftn0.png)
For zeros, p(x)=0.
![x^3-2x^2+2x=0](https://img.qammunity.org/2022/formulas/mathematics/college/2cpa9e2nim4xtw350ng41rinifp71ttv1d.png)
![x(x^2-2x+2)=0](https://img.qammunity.org/2022/formulas/mathematics/college/gap6i2mhls8udrxxpra4lsfhjll4wxr75r.png)
![x(x^2-2x+2)=0](https://img.qammunity.org/2022/formulas/mathematics/college/gap6i2mhls8udrxxpra4lsfhjll4wxr75r.png)
![x=0\text{ and }x^2-2x+2=0](https://img.qammunity.org/2022/formulas/mathematics/college/2i8aq53ymzqkm95uyaq0b0kbwc9cvl0w2u.png)
The real value of x is 0. The equation
will give complex roots. Here, a=1, b=-2 and c=2.
Using quadratic formula, we get
![x=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jd1mt5sjex107aal1tv0tsad9i7ertp965.png)
![x=(-(-2)\pm √((-2)^2-4(1)(2)))/(2(1))](https://img.qammunity.org/2022/formulas/mathematics/college/76hnpcxp448hu9d6kzexowrpjb4rxe7dsf.png)
![x=(2\pm √(4-8))/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/usoqdb94a4vdl18wkm5r9eb6tey703j725.png)
![x=(2\pm √(-4))/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/b3fhne7qb9ehrus1d8njm0janm40nqm6rq.png)
On further simplification, we get
![x=(2\pm √(-1)√(4))/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/kyt3tawqa9idne3mukqly1wi95vcnklnhh.png)
![x=(2\pm 2i)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/eg3j6yeg8v7e5zu24inxfnxek6oflf2t2c.png)
![x=(2(1\pm i))/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/qzg4muaqvxs1wg5q68p580n6pxzcbqjzmu.png)
![x=1\pm i](https://img.qammunity.org/2022/formulas/mathematics/college/yhhmo5p3o1ddffzp64nfo94m08l2ovf7rl.png)
Therefore, the real zero is 0 and the complex zeros are 1+i and 1-i.