Answer:
![(x,y) = (-30,10)](https://img.qammunity.org/2022/formulas/mathematics/college/4rqopm3s42rdhyuu9zaewmxjk3g873m33p.png)
Explanation:
Given
![(x,y) = (60,-20)](https://img.qammunity.org/2022/formulas/mathematics/college/r4denn1z5mw1xq8oz8kykigblw07rps56u.png)
Required:
Determine a pair with a proportional relationship
A proportional relationship is:
![k = (y)/(x)](https://img.qammunity.org/2022/formulas/mathematics/college/rsmmjpy3l8dkom7crho72w640k1pf9hpfj.png)
Where k is the constant of proportionality.
![(x,y) = (60,-20)](https://img.qammunity.org/2022/formulas/mathematics/college/r4denn1z5mw1xq8oz8kykigblw07rps56u.png)
So, we have:
![k = (-20)/(60)](https://img.qammunity.org/2022/formulas/mathematics/college/ox1u2lyubox2omak8wihtfncwftm7b2hop.png)
![k = -(1)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/vhjjkic2s9slhf4kp7nf6rh8ewrhyh98aw.png)
This means that for a pair to have a proportional relation, k must be -1/3.
This is true for (c).
Where:
![(x,y) = (-30,10)](https://img.qammunity.org/2022/formulas/mathematics/college/4rqopm3s42rdhyuu9zaewmxjk3g873m33p.png)
So, we have:
![k = (10)/(-30)](https://img.qammunity.org/2022/formulas/mathematics/college/a29eut1e7eyreyxcmdgn2pg4gcpvz4xhno.png)
![k = -(1)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/vhjjkic2s9slhf4kp7nf6rh8ewrhyh98aw.png)