Answer:
-75°, -45°, -15°, 0°, 15°, 45°, 75°
Given:
sin(5x) + sin(-7x) = 0
Common breakdown:
sin(6x-x) + sin(-6x-x) = 0
sin(6x-x) - sin(6x+x) = 0
Use the formula:
sin(A ± B) = sin(A)cos(B) ± cos(B)sin(A)
Evaluate:
[sin(6x)cos(x) - cos(6x)sin(x)] - [sin(6x)cos(x) + cos(6x)sin(x)]
sin(6x)cos(x) - cos(6x)sin(x) - sin(6x)cos(x) - cos(6x)sin(x)
-2cos(6x)sin(x) = 0
Solve them by parts:
cos(6x) = 0, sin(x) = 0
As -90<x<90 so -540<x<540
6x = -450, -270, -90, 90, 270, 450
x = -75, -45, -15, 15, 45, 75
sin(x) = 0
x = 0 only.