218k views
3 votes
Solve in the interval -90
\leqx
\leq90, sin(5x) + sin(-7x) = 0. Explaining your full method.

User Benesh
by
8.6k points

1 Answer

3 votes

Answer:

-75°, -45°, -15°, 0°, 15°, 45°, 75°

Given:

sin(5x) + sin(-7x) = 0

Common breakdown:

sin(6x-x) + sin(-6x-x) = 0

sin(6x-x) - sin(6x+x) = 0

Use the formula:

sin(A ± B) = sin(A)cos(B) ± cos(B)sin(A)

Evaluate:

[sin(6x)cos(x) - cos(6x)sin(x)] - [sin(6x)cos(x) + cos(6x)sin(x)]

sin(6x)cos(x) - cos(6x)sin(x) - sin(6x)cos(x) - cos(6x)sin(x)

-2cos(6x)sin(x) = 0

Solve them by parts:

cos(6x) = 0, sin(x) = 0

  • For cos(6x)

As -90<x<90 so -540<x<540

6x = -450, -270, -90, 90, 270, 450

x = -75, -45, -15, 15, 45, 75

  • For sin(x)

sin(x) = 0

x = 0 only.

User Manroe
by
7.5k points