Answer:
m∠ WVT = 143° and m∠ TVU = 37°
Explanation:
Since the sum of the interior angle of a triangle is 180°.
So,
m∠ TVU + m∠ TUV + m∠ UTV = 180°
Substitute given values:
m∠ TVU + 90° + 53° = 180°
m∠ TVU + 143° = 180°
Subtract 143° on both sides.
m∠ TVU + 143° - 143° = 180° - 143°
m∠ TVU = 37°
And
The pair angle of linear pair is also supplementary.
So,
m∠ TVU + m∠ WVT= 180°
Substitute known values:
37° + m∠ WVT= 180°
Subtract 37° on both sides.
37° + m∠ WVT - 37° = 180° - 37°
m∠ WVT = 143°
Therefore, answer is:
m∠ WVT = 143° and m∠ TVU = 37°