Answer:
Explanation:
Given:
- vertex (p, q) = (-4, -4)
- roots (x₁, 0) & (x₂, 0) = (-2, 0) & (-6, 0)

f(x) = a(x-(-4))² + (-4)
f(x) = a(x+4)² - 4
[in order to find value of a, substitute x & f(x) with any coordinate from the parabola, e.g.(-2, 0)]
0 = a(-2+4)² - 4
0 = 4a - 4
a = 1
Therefore:
vertex form : f(x) = (x+4)² - 4
To find the standard form, just expand the vertex form:
f(x) = (x+4)² - 4
f(x) = (x²+8x+16) - 4
f(x) = x² + 8x + 12
To find the intercept form, just factorize the standard form
f(x) = x² + 8x + 12
f(x) = (x+2)(x+6)