Answer:
Explanation:
Given:
- vertex (p, q) = (3, 9)
- roots (x₁, 0) & (x₂, 0) = (0, 0) & (6, 0)

f(x) = a(x-3)² + 9
[in order to find value of a, substitute x & f(x) with any coordinate from the parabola, e.g.(0, 0)]
0 = a(0-3)² + 9
0 = 9a + 9
a = -1
Therefore:
vertex form : f(x) = -(x-3)² + 9
To find the standard form, just expand the vertex form:
f(x) = -(x-3)² + 9
f(x) = -(x²-6x+9) + 9
f(x) = -x² + 6x
To find the intercept form, just factorize the standard form
f(x) = -x² + 6x
f(x) = -(x² - 6x)
f(x) = -x(x - 6)