Answer:
j(x) = 4x - 2
To find j of the quantity x plus h minus j of x all over h period 4 to the power of the quantity x minus 2 end quantity times the quantity 4 to the power of h end quantity all over h, we need to follow the order of operations (PEMDAS):
1. Evaluate x plus h minus j of x:
x + h - j(x) = x + h - 4x + 2 = 3x + h - 2
2. Raise 4 to the power of the quantity x minus 2 end quantity:
4^x - 2 = 4^x \* 4^(-2) = 4^x \* 1/16 = 4^x / 16
3. Multiply the results of steps 1 and 2:
3x + h - 2 \* 4^x / 16 = 3x + h - 2 \* 4^x / 16
4. Simplify the expression:
3x + h - 2 \* 4^x / 16 = 3x + h - 2 \* (4^x / 16)
5. Evaluate the expression:
3x + h - 2 \* (4^x / 16) = 3x + h - 2 \* (4^x / 16)
The final answer is:
3x + h - 2 \* (4^x / 16)
Explanation: