38.9k views
2 votes
. Find the cubes of:

(0) 2b + 5

(11) ax - by

(ii) a ^ 2 - b ^ 2

(iv) - 7a + 2b ^ 2

6. Find the values of:

(v) 2a - 3bc

(vi) 1 + a - 2b

(11) 31 * 51.6 * 31.6 - 3 * 31.6 * 31.6 * 28.6 + 3 * 316 * 28.6 * 286- 28.6 * 28.6 * 28.6

(i) 0.03 * 5.83 * 5.83 - 3 * 5.83 * 5.83 * 3.83 + 3 * 5.83 * 3.83 * 383- 3.83 * 3.83 * 3.83

OXFORD

(vi) a ^ 2 + bc

(vii) 42

(x) 105

(1x) p ^ 2 - q ^ 2 - r ^ 2

(1) 51 * 51 * 51 - 3 * 51 * 51 * 46 + 3 * 51 * 46 * 46 - 46 * 46 * 46

(vil) x ^ 2 - y - z

W 198

(x) 399

(viii) a - 2b - 3c

(vi) a ^ 2 + b ^ 2

(xi) 999

1 Answer

4 votes

Answer:

Sure, I'd be happy to help! Here are the answers to the questions you've provided, with the answer portions bolded using HTML:

(0) 2b + 5(11) ax - by

The cubes of (0) 2b + 5(11) ax - by are:

* 2b: 2b x 2b x 2b = 8b^3

* 5(11) ax: 5(11) x 11 = 55, so 5(11) ax = 55ax

* -by: -by x -by x -by = -b^3y^3

Therefore, the cubes of (0) 2b + 5(11) ax - by are 8b^3 - 55ax - b^3y^3.

(ii) a ^ 2 - b ^ 2

The cube of a ^ 2 - b ^ 2 is:

* a^2: a x a x a = a^3

* -b^2: -b x -b x -b = -b^3

Therefore, the cube of a ^ 2 - b ^ 2 is a^3 - b^3.

(iv) - 7a + 2b ^ 26

The cube of - 7a + 2b ^ 26 is:

* -7a: -7a x -7a x -7a = -49a^3

* 2b^26: 2b x 2b x 2b x ... x 2b (26 times) = 2b^26

Therefore, the cube of - 7a + 2b ^ 26 is -49a^3 + 2b^26.

(v) 2a - 3bc

The cube of 2a - 3bc is:

* 2a: 2a x 2a x 2a = 8a^3

* -3bc: -3bc x -3bc x -3bc = -9b^2c^2

Therefore, the cube of 2a - 3bc is 8a^3 - 9b^2c^2.

(vi) 1 + a - 2b

The cube of 1 + a - 2b is:

* 1: 1 x 1 x 1 = 1

* a: a x a x a = a^3

* -2b: -2b x -2b x -2b = -4b^3

Therefore, the cube of 1 + a - 2b is 1 + a^3 - 4b^3.

(vii) 42

The cube of 42 is:

* 42: 42 x 42 x 42 = 1764

Therefore, the cube of 42 is 1764.

(viii) a - 2b - 3c

The cube of a - 2b - 3c is:

* a: a x a x a = a^3

* -2b: -2b x -2b x -2b = -4b^3

* -3c: -3c x -3c x -3c = -9c^3

Therefore, the cube of a - 2b - 3c is a^3 - 4b^3 - 9c^3.

(ix) x ^ 2 - y - z

The cube of x ^ 2 - y - z is:

* x^2: x x x x = x^4

* -y: -y x -y x -y = -y^3

* -z: -z x -z x -z = -z^3

Therefore, the cube of x ^ 2 - y - z is x^4 - y^3 - z^3.

(x) 105(1x) p ^ 2 - q ^ 2 - r ^ 2

The cube of 105(1x) p ^ 2 - q ^ 2 - r ^ 2 is:

* 105: 105 x 105 x 105 = 11225

* p^2: p x p x p = p^3

* q^2: q x q x q = q^3

* r^2: r x r x r = r^3

Therefore, the cube of 105(1x) p ^ 2 - q ^ 2 - r ^ 2 is 11225 - 3p^3 - 3q^3 - 3r^3.

(xi) 999

The cube of 999 is:

* 999: 999 x 999 x 999 = 999001

Therefore, the cube of 999 is 999001.

Explanation:

User Zgoda
by
7.3k points