34.3k views
4 votes
Question 9 of 10

Colleen took out a 30-year loan for $145,000 at an APR of 4.5%, compounded
monthly. Approximately what would be the total cost of her loan if she paid it
off 8 years early?
OA. $264,488.40
OB. $193,958.16
OC. $59,138.68
D. $253,096.84

1 Answer

6 votes

Final answer:

To calculate the total cost of the loan, use the formula to find the monthly payment amount and multiply it by the total number of payments. The total cost is $191,958.16.


Step-by-step explanation:

To find the total cost of the loan, we need to calculate the monthly payment amount and the total number of payments. The formula to calculate the monthly payment amount is:

P = (r(PV))/(1-(1+r)^(-nt))

Where P is the monthly payment, r is the monthly interest rate, PV is the present value (loan amount), n is the total number of payments, and t is the number of years.

Using the given information, we can calculate the monthly payment amount, which is $726.31. Multiplying this by the total number of payments, which is (30-8)*12 = 264, we get the total cost of the loan to be $191,958.16.


Learn more about Total cost of a loan

User Sagar Chaudhary
by
8.6k points