221,219 views
16 votes
16 votes
Solve2cos²x+3sin x=0

User Ravan Scafi
by
3.0k points

1 Answer

7 votes
7 votes

One of the most important trigonometric identities is the one below


\cos ^2x+\sin ^2x=1

Then,


\Rightarrow\cos ^2x=1-\sin ^2x

Use this result in the equation given by the problem


\begin{gathered} 2\cos ^2x+3\sin x=0 \\ \Rightarrow2(1-\sin ^2x)+3\sin x=0 \\ \Rightarrow2-2\sin ^2x+3\sin x=0 \end{gathered}

Furthermore,


\begin{gathered} \Rightarrow2\sin ^2x-3\sin x-2=0 \\ \Rightarrow2\sin ^2x-3\sin x=2 \\ \Rightarrow\sin x(2\sin x-3)=2 \end{gathered}

Set y=sinx


\begin{gathered} \Rightarrow y(2y-3)=2 \\ \Rightarrow y=-(1)/(2),y=2 \end{gathered}

Thus,


\begin{gathered} \sin x=-(1)/(2),\sin x=2 \\ \Rightarrow\sin x=-(1)/(2) \\ \text{if sinx=2, then x is not a real number} \end{gathered}

Finally,


\begin{gathered} \sin x=-(1)/(2) \\ \Rightarrow x=\sin ^(-1)(-(1)/(2))=-(\pi)/(6) \end{gathered}

Then, the answer is


x=-(\pi)/(6)+2n\pi,\text{ n is an integer}

The answer is x=-pi/6+2n*pi

User RomeNYRR
by
2.8k points