35.1k views
0 votes
Demonstrate that: a2+b2+c2+d2 ≥ (a +b)(c+d)
(a#0)

User Ermiar
by
7.7k points

1 Answer

1 vote

Answer:

Hi,

Explanation:


To\ prove\ that \\a^2+b^2+c^2+d^2\geq (a+b)(c+d)\\where\ a\\eq 0\\Expanding\ the\ right-hand side,\ we\ have:\ (a+b)(c+d)=ac+ad+bc+bd\\


(a-c)^2\geq 0\\(b-d)^2\geq 0\\(a-c)^2+(b-d)^2\geq 0\\a^2-2ac+c^2+b^2-2bd+d^2\geq 0\\\\a^2+c^2+b^2+d^2\geq 2ac+2bd\ (1)\\


(a-d)^2\geq 0\\(b-c)^2\geq 0\\(a-d)^2+(b-c)^2\geq 0\\a^2+d^2-2ad+b^2+c^2-2bc\geq 0\\\\a^2+c^2+b^2+d^2\geq 2ad+2bc\ (2)\\

Adding these two inequalities, we get:


2(a^2+b^2+c^2+d^2)\geq 2ac+2bd+2ad+2bc\\\\Dividing\ both\ sides\ by\ 2, we\ obtain:\\a^2+b^2+c^2+d^2\geq ac+bd+ad+bc\\\\Simplifying\ further, we\ have:\\a^2+b^2+c^2+d^2\geq (a+b)(c+d)\\\\

User Janar
by
7.4k points