Answer:
Explanation:
To simplify the expression A=(3x±5)²-4(3x±5), we can expand the squared term using the binomial square formula. Let's break down the steps:
1. Start by expanding the squared term:
(3x±5)² = (3x±5) × (3x±5)
= (3x)² ± 2(3x)(5) + (5)²
= 9x² ± 30x + 25
2. Next, distribute the -4 to each term in the expanded squared term:
-4(9x² ± 30x + 25) = -36x² ± 120x - 100
3. Combine like terms:
A = (9x² ± 30x + 25) - (36x² ± 120x - 100)
= 9x² ± 30x + 25 - 36x² ± 120x + 100
= (9x² - 36x²) ± (30x + 120x) + (25 + 100)
= -27x² ± 150x + 125
So, the simplified expression for A=(3x±5)²-4(3x±5) is -27x² ± 150x + 125.