28.9k views
2 votes
A≈(3x±5)²- 4(3x±5)
Calculer A pour x≈2

User Dejakob
by
7.7k points

1 Answer

3 votes

Answer:

Explanation:

To simplify the expression A=(3x±5)²-4(3x±5), we can expand the squared term using the binomial square formula. Let's break down the steps:

1. Start by expanding the squared term:

(3x±5)² = (3x±5) × (3x±5)

= (3x)² ± 2(3x)(5) + (5)²

= 9x² ± 30x + 25

2. Next, distribute the -4 to each term in the expanded squared term:

-4(9x² ± 30x + 25) = -36x² ± 120x - 100

3. Combine like terms:

A = (9x² ± 30x + 25) - (36x² ± 120x - 100)

= 9x² ± 30x + 25 - 36x² ± 120x + 100

= (9x² - 36x²) ± (30x + 120x) + (25 + 100)

= -27x² ± 150x + 125

So, the simplified expression for A=(3x±5)²-4(3x±5) is -27x² ± 150x + 125.

User LJ White
by
7.8k points