*Complete Question:
A and B are two similar cylindrical containers.
Surface area of container A: surface area of container B = 4:25
Warda fills container A with oil.
She then pours all the oil into container B.
Warda repeats this and stops when container B is full of oil.
Work out the number of times that Warda fills container A with oil.
Answer/Step-by-step explanation:
We are given that the ratio of surface area of cylinder A to cylinder B = 4:25
To find out the number of times Warda fills cylinder A with oil, we need to find the ratio of the volume of cylinder A to cylinder B.
✔️First, find the linear measurement using the ratio of their surface area by taking their square root:
4:25 = √4/√25 = 2/5
Linear measurement of A to B = 2:5
The ratio of their volume = the cube of the ratio of their linear measurement
Thus, the ratio of the volume of A to B = 2³:5³ = 8:125
For Cylinder B to be filled, it would require 125/8 = 15.625 of cylinder A filled with oil. That means Warda would have to fill Cylinder A with oil for approximately 15 times, then an extra fraction of cylinder A to completely fill cylinder B with oil.