56.7k views
3 votes
1. A store sells red, purple, green, yellow, orange, pink and blue Easter eggs. A child buys three eggs. How many possible combinations of egg purchases are possible if the child may choose more than

User Buttercup
by
8.6k points

1 Answer

4 votes

Final answer:

There are 210 possible combinations of choosing 3 Easter eggs from the 7 colors available.

Step-by-step explanation:

There are 7 different colors of Easter eggs available. Since the child can choose more than one egg, we need to find the number of possible combinations of choosing 3 eggs from these 7 colors. This can be calculated using the combinations formula:

  1. First, calculate the factorial of 7, which is 7! = 7 x 6 x 5 x 4 x 3 x 2 x 1 = 5040.
  2. Next, calculate the factorial of (7-3), which is 4! = 4 x 3 x 2 x 1 = 24.
  3. Finally, divide the result from step 1 by the result from step 2: 5040 / 24 = 210.

So, there are 210 possible combinations of choosing 3 Easter eggs from the 7 colors available.

User Rishabh Singhal
by
7.0k points