214k views
4 votes
Solve √35*27*6
with full sum​

User Fxfuture
by
7.4k points

1 Answer

5 votes

Explanation:

To solve the expression \(\sqrt{35} \cdot 27 \cdot 6\) with the square root included, you can follow these steps:

Step 1: Simplify the square root.

\(\sqrt{35} = \sqrt{5 \cdot 7} = \sqrt{5} \cdot \sqrt{7}\)

Step 2: Substitute the simplified square root back into the expression.

\(\sqrt{35} \cdot 27 \cdot 6 = (\sqrt{5} \cdot \sqrt{7}) \cdot 27 \cdot 6\)

Step 3: Calculate the product.

\((\sqrt{5} \cdot \sqrt{7}) \cdot 27 \cdot 6 = \sqrt{5} \cdot \sqrt{7} \cdot 27 \cdot 6\)

Step 4: Calculate the remaining product.\(\sqrt{5} \cdot \sqrt{7} \cdot 27 \cdot 6 = (\sqrt{5} \cdot 27) \cdot (\sqrt{7} \cdot 6)\)

Step 5: Calculate each part of the product separately.

\(\sqrt{5} \cdot 27 = 27\sqrt{5}\)

\(\sqrt{7} \cdot 6 = 6\sqrt{7}\)

Step 6: Multiply the results.

\(27\sqrt{5} \cdot 6\sqrt{7} = 162\sqrt{5\cdot 7} = 162\sqrt{35}\)

So, \(\sqrt{35} \cdot 27 \cdot 6 = 162\sqrt{35}\).

User Loading
by
8.2k points