Check the picture below.
so the ellipse looks more or less like the one in the picture, hmmm so we know one focus point at (0,3), and an endpoint at (4,0), the endpoint gives us more or less the conjugate axis, assuming we use the origin at its center, that puts the other focus point at (0,-3), as you see in the picture.
A) what form to use?
well, if we use the origin as its center, that means the major axis is vertical, so the "a" component must be in the fraction with the "y" variable, so

B)
![\textit{ellipse, vertical major axis} \\\\ \cfrac{(x- h)^2}{ b^2}+\cfrac{(y- k)^2}{ a^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h, k\pm a)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad √( a ^2- b ^2) \end{cases} \\\\[-0.35em] ~\dotfill](https://img.qammunity.org/2024/formulas/mathematics/college/q47a0aeokce58ygxrpd8if3nkhngiu5jee.png)
![\begin{cases} h=0\\ k=0\\ b=4\\ c=3 \end{cases}\implies \cfrac{(x- 0)^2}{ 4^2}+\cfrac{(y- 0)^2}{ a^2}=1 \\\\\\ c=√(a^2-b^2)\implies 3=√(a^2-4^2)\implies 9=a^2-16 \\\\\\ 25=a^2\implies √(25)=a\implies 5=a \\\\[-0.35em] ~\dotfill\\\\ \cfrac{(x- 0)^2}{ 4^2}+\cfrac{(y- 0)^2}{ 5^2}=1\implies \boxed{\cfrac{x^2}{16}+\cfrac{y^2}{25}=1}](https://img.qammunity.org/2024/formulas/mathematics/college/jfkwm2gzmyx4gg9a3gxqq9yeofh944mht3.png)
C)
major is simply 5 + 5 = 10
minor is just 4 + 4 = 8.