Answer:
BC = 4 cm
BE = 10.39
Explanation:
ABCD is an isosceles trapezoid.
Measures of base angles of an isosceles trapezoid are equal.
![\therefore m\angle ABC = m\angle DCB](https://img.qammunity.org/2022/formulas/mathematics/high-school/i7tihio10ld5rl9572z4z4mfbovj8yrkn4.png)
![\because m\angle DCB = 120\degree](https://img.qammunity.org/2022/formulas/mathematics/high-school/xyqllpgrwzs9ov6pih7ukaumuw29h98ym3.png)
![\therefore m\angle ABC = 120\degree](https://img.qammunity.org/2022/formulas/mathematics/high-school/knr98tm61drd5n52e3f4aqixqv79cksati.png)
![m\angle ABE = 120\degree-90\degree](https://img.qammunity.org/2022/formulas/mathematics/high-school/sf6v07mydq2n9u526nuxuixzvdd0up7gli.png)
![m\angle ABE = 30\degree](https://img.qammunity.org/2022/formulas/mathematics/high-school/k6kp8r4x30sgrk21dcvkom08q8sy708xe7.png)
in triangle ABE,
![\cos 30\degree =(BE)/(12)](https://img.qammunity.org/2022/formulas/mathematics/high-school/cgqmbpgn03jujmebm5etw82830b43k7mc9.png)
![(\sqrt 3)/(2) =(BE)/(12)](https://img.qammunity.org/2022/formulas/mathematics/high-school/mb8omsmenkg81c49wk2ozrnexnuk4cdxli.png)
![BE = (\sqrt 3* 12)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/m040cu5vuwz8f5fspng53ra1gg2h0guwbs.png)
![BE =6\sqrt 3\: cm](https://img.qammunity.org/2022/formulas/mathematics/high-school/lehaxcz3rtmzkdr5h9bair31f0uvw3oay0.png)
![BE = 10.39 cm](https://img.qammunity.org/2022/formulas/mathematics/high-school/h8v1ggdct6b7rs7oxjmw5eg9yaplxo5jhp.png)
![\sin 30\degree =(AE)/(12)](https://img.qammunity.org/2022/formulas/mathematics/high-school/od45j4422z20vtylkwe4u4gxl12r8pzeze.png)
![(1)/(2) =(AE)/(12)](https://img.qammunity.org/2022/formulas/mathematics/high-school/1hknl5jjqyypy66oux2p91asr2hv2j0gl9.png)
![AE = (12)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/freyyjn5221h2mq1177xvclzcw0wyegfqd.png)
![AE =6 \: cm](https://img.qammunity.org/2022/formulas/mathematics/high-school/q7vnhstapeukktjv83v2tsacqwbkhfsmqi.png)
Next, Draw
![CF\perp AD](https://img.qammunity.org/2022/formulas/mathematics/high-school/7fmw7m6c3s55v99x69gi2e4hiouygxkqbi.png)
FD = AE = 6
EF = 16 - (AE + FD) = 16 - (6+6) = 16-12
EF = 4 cm
BCFE is a rectangle.
Measures of the opposite sides of a rectangle are equal.
Therefore
BC = EF
BC = 4 cm