Answer:
![\frac{\text{d}w}{\text{d}t} = e^{(4-t)/(7+3t)}\left[(63t^8+275t^7+343t^6)/((7+3t)^2)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/87ae5585adua3qq7o5hpvxibganlzfyjax.png)
Explanation:
Given equations:




To find dw/dt for the given functions w, x, y, and z, use the chain rule. The chain rule states that if you have a composite function like w(x(t), y(t), z(t)), then the derivative of w with respect to t is given by:

Partial derivatives are the rates at which a multivariable function changes with respect to specific individual variables, while keeping all other variables constant.
Find the partial derivatives of w with respect to x, y, and z, using the chain rule where necessary.
To find δw/δx, treat y and z as constants:

To find δw/δy, treat y and z as constants:

Apply the chain rule:



To find δw/δz, treat x and y as constants:

Apply the chain rule:



Next, calculate the derivatives of x, y, and z with respect to t:



Now, substitute these derivatives and the partial derivatives into the chain rule formula:



![\frac{\text{d}w}{\text{d}t} = e^{(y)/(z)}\left[7t^6 - (x)/(z) -(3xy)/(z^2)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/ow3ollbwlezrej5lb325ggi6s2fc9pr4bg.png)
Plug in the expressions for x, y and z:
![\frac{\text{d}w}{\text{d}t} = e^{(4-t)/(7+3t)}\left[7t^6 - (t^7)/(7+3t) -(3t^7(4-t))/((7+3t)^2)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/h3n98bc3b0l5af0f1qolik88l4obsa5u0v.png)
![\frac{\text{d}w}{\text{d}t} = e^{(4-t)/(7+3t)}\left[(7t^6(7+3t)^2)/((7+3t)^2) - (t^7(7+3t))/((7+3t)^2) -(3t^7(4-t))/((7+3t)^2)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/gw86pij7jwp3ekj94x2mly0tv9b1uc4g2i.png)
![\frac{\text{d}w}{\text{d}t} = e^{(4-t)/(7+3t)}\left[(7t^6(7+3t)^2-t^7(7+3t)-3t^7(4-t))/((7+3t)^2)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/ayy73f952ejcmird7v64xrnhxuu1rsxlat.png)
![\frac{\text{d}w}{\text{d}t} = e^{(4-t)/(7+3t)}\left[(63t^8+275t^7+343t^6)/((7+3t)^2)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/87ae5585adua3qq7o5hpvxibganlzfyjax.png)
Therefore, dw/dt is:
![\large\boxed{\boxed{\frac{\text{d}w}{\text{d}t} = e^{(4-t)/(7+3t)}\left[(63t^8+275t^7+343t^6)/((7+3t)^2)\right]}}](https://img.qammunity.org/2024/formulas/mathematics/college/uod0nhxs7rdceitgenbkj4hhph0wu2887l.png)
Please note that you may need to give the derivative as an expanded form (or some other form).