The value of the line integral is 9.5.
Break the curve C into three line segments:
C1: from (0, 0, 5) to (2, 0, 1)
C2: from (2, 0, 1) to (0, 3, 2)
C3: from (0, 3, 2) back to (0, 0, 5)
Parameterize each line segment:
C1: r(t) = (2t, 0, 5 - 4t), 0 ≤ t ≤ 1
C2: r(t) = (2 - 2t, 3t, 1 + t), 0 ≤ t ≤ 1
C3: r(t) = (0, 3 - 3t, 2 - t), 0 ≤ t ≤ 1
Evaluate the line integral along each segment:
C1:
F(r(t)) = (0, 2t, -5 + 4t)
dr/dt = (2, 0, -4)
F · dr = 0 + 0 + (-5 + 4t)(-4) = 20 - 16t
∫_C1 F · dr = ∫_0^1 (20 - 16t) dt = 4
C2:
F(r(t)) = (-3t, 2 - 2t, -1 - t)
dr/dt = (-2, 3, 1)
F · dr = (-3t)(-2) + (2 - 2t)(3) + (-1 - t)(1) = 11 - 7t
∫_C2 F · dr = ∫_0^1 (11 - 7t) dt = 4
C3:
F(r(t)) = (-3 + 3t, 0, -2 + t)
dr/dt = (0, -3, -1)
F · dr = (-3 + 3t)(0) + 0 + (-2 + t)(-1) = 2 - t
∫_C3 F · dr = ∫_0^1 (2 - t) dt = 1.5
Add the line integrals along each segment:
∫_C F · dr = ∫_C1 F · dr + ∫_C2 F · dr + ∫_C3 F · dr = 4 + 4 + 1.5 = 9.5