8.5k views
3 votes
Find the following for the function f(x) = 4x² + 3x - 4: (a) f(0) (b) f(4) (c) f(-4) (d) f(-x) (e) -f(x) (f) f(x+3) (g) f(3x) (h) f(x+h)

1 Answer

0 votes
To find these values for the function f(x) = 4x² + 3x - 4, you simply need to substitute the given values into the function and perform the calculations. Here are the results:

(a) f(0):
f(0) = 4(0)² + 3(0) - 4
f(0) = 0 + 0 - 4
f(0) = -4

(b) f(4):
f(4) = 4(4)² + 3(4) - 4
f(4) = 4(16) + 12 - 4
f(4) = 64 + 12 - 4
f(4) = 72

(c) f(-4):
f(-4) = 4(-4)² + 3(-4) - 4
f(-4) = 4(16) - 12 - 4
f(-4) = 64 - 12 - 4
f(-4) = 48 - 4
f(-4) = 44

(d) f(-x):
f(-x) = 4(-x)² + 3(-x) - 4
f(-x) = 4x² - 3x - 4

(e) -f(x):
-f(x) = -(4x² + 3x - 4)
-f(x) = -4x² - 3x + 4

(f) f(x+3):
f(x+3) = 4(x+3)² + 3(x+3) - 4
f(x+3) = 4(x² + 6x + 9) + 3x + 9 - 4
f(x+3) = 4x² + 24x + 36 + 3x + 5
f(x+3) = 4x² + 27x + 41

(g) f(3x):
f(3x) = 4(3x)² + 3(3x) - 4
f(3x) = 4(9x²) + 9x - 4
f(3x) = 36x² + 9x - 4

(h) f(x+h):
f(x+h) = 4(x+h)² + 3(x+h) - 4
f(x+h) = 4(x² + 2xh + h²) + 3x + 3h - 4
f(x+h) = 4x² + 8xh + 4h² + 3x + 3h - 4

These are the values of the function for the given inputs and transformations.
User Dan Jaouen
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories