220k views
5 votes
What is the simplified form of (x+1)/(x^2+x-6) ÷ (x^2+5x+4)/(x+4) ? 1) 1/(x+3)(x+4) 2) 1/(x+3)(x-2) 3) 1/(x+4)(x-2) 4) 1/(x+3)(x+1)

1 Answer

5 votes

Final answer:

To simplify the given expression, multiply the numerator by the reciprocal of the denominator and cancel out common factors. The simplified form of the expression is 1/(x+3)(x+4).

Step-by-step explanation:

To simplify the expression (x+1)/(x^2+x-6) ÷ (x^2+5x+4)/(x+4), we can start by multiplying the numerator by the reciprocal of the denominator. This gives us (x+1)/(x+4) * (x+4)/(x^2+x-6). Next, we can cancel out common factors between the numerator and denominator. The (x+4) terms cancel out, leaving us with (x+1)/(x^2+x-6). The simplified form of the expression is therefore 1/(x^2+x-6), which corresponds to option 1) 1/(x+3)(x+4).

Learn more about Simplifying Rational Expressions

User Onepiece
by
8.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories