38.6k views
8 votes
F(x) =

2x2 + 4x – 3
- 22 – 5x – 2
Find f'(x) and f''(a).
f'(x) =
PENER
-
SURRETH
HER
f''(x) =
THE

F(x) = 2x2 + 4x – 3 - 22 – 5x – 2 Find f'(x) and f''(a). f'(x) = PENER - SURRETH HER-example-1
User Bernadine
by
4.9k points

1 Answer

6 votes

9514 1404 393

Answer:

f'(x) = (-6x² -14x -23)/(x² +5x +2)²

f''(x) = (12x³ +42x² +138x +202)/(x² +5x +2)³

Explanation:

The applicable derivative formula is ...

d(u/v) = (v·du -u·dv)/v²

__

f'(x) = ((-x² -5x -2)(4x +4) -(2x² +4x -3)(-2x -5))/(-x² -5x -2)²

f'(x) = (-4x³ -24x²-28x -8 +4x³ +18x² +14x -15)/(x² +5x +2)²

f'(x) = (-6x² -14x -23)/(x² +5x +2)²

__

Similarly, the second derivative is the derivative of f'(x).

f''(x) = ((x² +5x +2)²(-12x -14) -(-6x² -14x -23)(2(x² +5x +2)(2x +5)))/(x² +5x +2)⁴

f''(x) = ((x² +5x +2)(-12x -14) +2(6x² +14x +23)(2x +5))/(x² +5x +2)³

f''(x) = (12x³ +42x² +138x +202)/(x² +5x +2)³

User Aqrit
by
4.6k points