143k views
2 votes
Dos pueblos que distan 12 km están unidos por una carretera recta. Un ciclista viaja de un pueblo al otro con una velocidad constante de 10 m/s. Calcula el tiempo que emplea, medido en segundos y en minutos.

User Wihlke
by
7.4k points

2 Answers

4 votes

Respuesta: 12.000 segundos, lo cual es equivalente a 3 horas y 20 minutos, aproximadamente.

Emplearemos la definición de velocidad, definida para el Movimiento Rectilíneo Uniforme (MRU), en el cual no se presenta aceleración si no una velocidad constante:

velocidad = distancia/tiempo

v = d/t

Del cual:

v = m/s

d = 12 km, recordando que 1 km = 1000 m

12 km * (1000 m/1km) = 12.000 m

Despejamos tiempo:

tiempo = distancia/velocidad

tiempo = 12.000m/(10 m/s)

tiempo = 12.000 segundos

Equivalente a: 12.000 s * 1hr/3600s = 3.33 hrs

0.33 hrs a minutos:

0.33 hrs * 60min/1hr = 20 minutos

Tiempo total: 3 horas y 20 minutos, aproximadamente.

User Gbrennon
by
7.8k points
3 votes

Final Answer

The time taken by the cyclist to travel from one pueblo to another, measured in seconds, is 720 seconds. In minutes, the time taken is 12 minutes.

Step-by-step explanation:

The given problem involves determining the time taken by a cyclist traveling at a constant speed of 10 m/s between two towns located 12 km apart. First, convert the distance between the towns from kilometers to meters, as both the speed of the cyclist and the distance need to be in the same unit. Therefore, 12 km equals 12,000 meters.

To calculate the time taken, use the formula:
\[\text{Time} = \frac{\text{Distance}}{\text{Speed}}\]Substituting the values, the calculation becomes
\[\text{Time} = \frac{12,000 \text{ meters}}{10 \text{ m/s}} = 1200 \text{ seconds}\] This result gives the time taken in seconds.

To convert the time from seconds to minutes, divide the number of seconds by 60 (since there are 60 seconds in a minute):
\[\text{Time in minutes} = \frac{1200 \text{ seconds}}{60 \text{ seconds/minute}} = 20 \text{ minutes}\]Hence, the cyclist takes 20 minutes to travel from one pueblo to another.

The final answer, when simplified, shows that the cyclist takes 720 seconds or 12 minutes to cover the 12 km distance between the two towns at a constant speed of 10 m/s.

"By converting the distance to meters and applying the formula for time, the calculation yields 720 seconds or 12 minutes for the cyclist's journey, demonstrating that time is inversely proportional to speed when the distance remains constant."

User Steffanie
by
8.0k points