Answer:
Table C
Explanation:
Given
Table A to D
Required
Which shows a proportional relationship
To do this, we make use of:
![k = (y)/(x)](https://img.qammunity.org/2022/formulas/mathematics/college/rsmmjpy3l8dkom7crho72w640k1pf9hpfj.png)
Where k is the constant of proportionality.
In table (A)
x = 2, y = 4
![k = (y)/(x)](https://img.qammunity.org/2022/formulas/mathematics/college/rsmmjpy3l8dkom7crho72w640k1pf9hpfj.png)
![k = (4)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/w0ze8qhis6pwkpzztbz3y8hs9skfaomuud.png)
![k = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/2u2d5cpl5mf3559vqysvq0yuyzwezcewjo.png)
x = 4, y = 9
![k = (y)/(x)](https://img.qammunity.org/2022/formulas/mathematics/college/rsmmjpy3l8dkom7crho72w640k1pf9hpfj.png)
![k = (9)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/dqdw29i7x6l7j3dluq2cowx1gnm0cxlbji.png)
![k = 2.25](https://img.qammunity.org/2022/formulas/mathematics/college/91b4yo1zqfalivyv5uf3dpxt6t50wopjgw.png)
Both values of k are different. Hence, no proportional relationship
In table (B)
x = 3, y = 4
![k = (y)/(x)](https://img.qammunity.org/2022/formulas/mathematics/college/rsmmjpy3l8dkom7crho72w640k1pf9hpfj.png)
![k = (4)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/2snii0h2nc5qmkadr5nu52zhn6wup79lyi.png)
![k = 1.33](https://img.qammunity.org/2022/formulas/mathematics/college/m9xlew7sbshivn5zf3b8dha1nbllvgtzn2.png)
x = 9, y = 16
![k = (y)/(x)](https://img.qammunity.org/2022/formulas/mathematics/college/rsmmjpy3l8dkom7crho72w640k1pf9hpfj.png)
![k = (16)/(9)](https://img.qammunity.org/2022/formulas/mathematics/college/v5detg1q8xr8j9eymaomrfprank35um0v0.png)
![k = 1.78](https://img.qammunity.org/2022/formulas/mathematics/college/syppsbfwquuvrlr2u00nh4vlexmzxduc9x.png)
Both values of k are different. Hence, no proportional relationship
In table (C):
x = 4, y = 12
![k = (y)/(x)](https://img.qammunity.org/2022/formulas/mathematics/college/rsmmjpy3l8dkom7crho72w640k1pf9hpfj.png)
![k = (12)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/e2b1y6au7pktozqolkcezeq6wz52v41g25.png)
![k = 3](https://img.qammunity.org/2022/formulas/mathematics/college/8j4z12zps83fp8gap7rb5tlq4sqwf61roa.png)
x = 5, y = 15
![k = (y)/(x)](https://img.qammunity.org/2022/formulas/mathematics/college/rsmmjpy3l8dkom7crho72w640k1pf9hpfj.png)
![k = (15)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/wwujnf5otiyg9cchkkkv8hd4jkdwzo8i0i.png)
![k = 3](https://img.qammunity.org/2022/formulas/mathematics/college/8j4z12zps83fp8gap7rb5tlq4sqwf61roa.png)
x = 6, y = 18
![k = (y)/(x)](https://img.qammunity.org/2022/formulas/mathematics/college/rsmmjpy3l8dkom7crho72w640k1pf9hpfj.png)
![k = (18)/(6)](https://img.qammunity.org/2022/formulas/mathematics/college/xfblhbwdrwgn4gpto6w65lnyt0dwp54nj5.png)
![k = 3](https://img.qammunity.org/2022/formulas/mathematics/college/8j4z12zps83fp8gap7rb5tlq4sqwf61roa.png)
This shows a proportional relationship because all values of k are the same for this table