The expression that can be simplified to a difference of squares is:
−
25
�
2
+
6
�
−
6
�
+
36
−25a
2
+6a−6a+36
To simplify this expression as a difference of squares, let's factor out the common factors:
−
25
�
2
+
6
�
−
6
�
+
36
−25a
2
+6a−6a+36
Group the terms:
−
(
25
�
2
−
6
�
)
+
(
−
6
�
+
36
)
−(25a
2
−6a)+(−6a+36)
Now, factor out the common factor from each group:
−
�
(
25
�
−
6
)
−
6
(
1
−
�
)
−a(25a−6)−6(1−a)
Now, we can see that
25
�
−
6
25a−6 is the difference of squares:
−
�
(
5
�
−
6
)
(
5
�
+
6
)
−
6
(
1
−
�
)
−a(5a−
6
)(5a+
6
)−6(1−a)
So, the polynomial that can be simplified to a difference of squares is
−
25
�
2
+
6
�
−
6
�
+
36
−25a
2
+6a−6a+36.